The Ergodic Hierarchy , Randomness and Hamiltonian Chaos 1 , 2
نویسندگان
چکیده
Various processes are often classified as both deterministic and random or chaotic. The main difficulty in analysing the randomness of such processes is the apparent tension between the notions of randomness and determinism: what type of randomness could exist in a deterministic process? Ergodic theory seems to offer a particularly promising theoretical tool for tackling this problem by positing a hierarchy, the so-called ‘ergodic hierarchy’ (EH), which is commonly assumed to provide a hierarchy of increasing degrees of randomness. However, that notion of 1 Forthcoming in Studies in History and Philosophy of Modern Physics 37(4). The final version of the paper differs from this draft. Please download the PDFfile of the final version from http://www.romanfrigg.org/writings.htm. 2 This work is fully collaborative; the authors are listed alphabetically. 2 randomness requires qualification. The mathematical definition of EH does not make explicit appeal to randomness; nor does the usual way of presenting EH involve a specification of the notion of randomness that is supposed to underlie the hierarchy. In this paper we argue that EH is best understood as a hierarchy of random behaviour if randomness is explicated in terms of unpredictability. We then show that, contrary to common wisdom, EH is useful in characterising the behaviour of Hamiltonian dynamical systems.
منابع مشابه
The ergodic hierarchy, randomness and Hamiltonian chaos
Various processes are often classified as both deterministic and random or chaotic. The main difficulty in analysing the randomness of such processes is the apparent tension between the notions of randomness and determinism: what type of randomness could exist in a deterministic process? Ergodic theory seems to offer a particularly promising theoretical tool for tackling this problem by positin...
متن کاملRandom Behaviour in Quantum Chaos
We demonstrate that a family of radial Ornstein-Uhlenbeck stochastic processes displays an ergodic behaviour appropriate for known quantum chaos universality classes of nearest neighbour spacing distributions. A common feature of those parametric processes is an asymptotic balance between the radial (Bessel-type) repulsion and the harmonic attraction, as manifested in the general form of forwar...
متن کاملStatistical mechanics of Hénon-Heiles oscillators.
Statistical mechanics is an asymptotic theory valid in the limit of an infinite number of degrees of freedom. The study of small-dimensional chaos, starting from the papers by Lorenz [1]and Henon and Heiles [2], raises the question: What is essential for the laws of statistical mechanics to be true —a large number of degrees of freedom or chaos? For ergodic Hamiltonian systems the answer was gi...
متن کاملAn algorithmic view of pseudochaos
The controversial concept of quantum chaos – the dynamical chaos in bounded mesoscopic quantum systems – is presented as the most important and universal instance of a new generic dynamical phenomenon: pseudochaos. The latter characterizes the irregular behaviour of dynamical systems with discrete energy and/or frequency spectrum, which include classical systems with discrete phase space. The q...
متن کاملChaos, ergodic convergence, and fractal instability for a thermostated canonical harmonic oscillator.
The authors thermostat a qp harmonic oscillator using the two additional control variables zeta and xi to simulate Gibbs' canonical distribution. In contrast to the motion of purely Hamiltonian systems, the thermostated oscillator motion is completely ergodic, covering the full four-dimensional [q,p,zeta,xi] phase space. The local Lyapunov spectrum (instantaneous growth rates of a comoving coro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006